Rust is Eating JavaScript
-
This post did not contain any content.
Good!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
Honestly those usecases described here shouldn’t have been done in js in the first place.
I agree.
I'm noticing this species has a problem with doing things the obviously correct way the first time.
It's as though we'd rather put 100x more effort for 10% of the results just to prove that we "can" do it.
-
If Rust had been around when I was an underclassman, I would have been totally locked into the full CompSci track. Instead, I got introduced to Java and C (and calculus…) and that looked like a nightmare compared to what I had been playing with in JS/Python land, so I noped on out of there and got a Comp Sci Lite degree.
Years later, I’m just completely in love with Rust.
I'm currently an underclassman and my OS class has a few assignments that let you choose to use c or rust. You convinced me to try rust
-
The GC in Go is fantastic IMO since it runs in a separate thread. I used it since 1.0 (switched our product from node.js), and dealt with all the the pain of an imprecise GC (fixed in 1.5?) and all the little improvements to arrive at it's current state.
The main issues I have with it are pretty core to the language, unfortunately, such as:
interface{}
is basically avoid*
, but since it's a fat pointer, it can holdnil
without itself beingnil
, which can happen by accident- runtime reflection is a bad habit, but it's unfortunately really common
- it's really easy to deadlock by making stupid mistakes; if it had automatic unlocking based on scope (like Rust, or something like Python's context managers), we could solve this, but
defer
just isn't good enough - no destructors - with destructors, we could build a solution to deadlocks
Maybe they fixed some of those issues, idk, I haven't used it for several years. I did use it for about 10 years though.
Not sure if that's what you are referring to as destructors, but they added a new way to have code run at resource collection in go 1.24
-
Is this a 2yo write up, considering the last update was in 2023?
Originally 4 years old at this point it looks like, and the great shift to wasm has failed to manifest.
-
I'm currently an underclassman and my OS class has a few assignments that let you choose to use c or rust. You convinced me to try rust
Hell yes! That was the point of my rambling though I never quite got there. I was wondering if curriculums had caught up yet, to at least look at the modern system languages. Sounds like you’re at a good program.
-
Well I see huge benefits in building the tools used by a community with the technology this community masters. IMO the Python's stdlib sucks because it's written in C which is a huge barrier to entry.
Not all of the stdlib is written in C. Some parts cannot be Python because it’s critical code that needs to be as fast as possible.
Python is already slow for many use cases, if the standard lib was all built in Python it would be just too slow for much more use cases.
-
Not sure if that's what you are referring to as destructors, but they added a new way to have code run at resource collection in go 1.24
I assume you're talking about
runtime. AddCleanup()
? That's certainly nice, but it's not the same as a destructor since it only runs at GC time. It's useful for cleaning up data used by a shared library or something (e.g. something malloc'd by a C lib), but it only solves part of the problem.I'm talking about scope guards. In Rust, here's how you deal with mutexes:
{ let value = mutex.Lock(); ... use value ... // mutex.Unlock() automatically called }
The closest thing in Go is
defer()
:mutex.Lock() defer mutex.Unlock()
That works most of the time, but it doesn't handle more complex use cases, like selectively unlocking a mutex early while still guaranteeing it eventually gets unlocked.
Rust fixes this with the
Drop
trait, so basically I can drop something early conditionally, but it'll get dropped automatically when going out of scope. For example:struct A(String); impl Drop for A { fn drop(&mut self) { println!("dropping {}", self.0) } } fn main() { let a = A("a".into()); let b = A("b".into()); let c = A("c".into()); drop(b); }
Without the last line, this prints c, b, a, i.e. stack order. With the last line, it instead prints b, c, a, because I drop b early.
This is incredibly useful when dealing with complex logic, especially with mutexes, because it allows you to cleanly and correctly handle edge cases. Things are dropped at block scope too, giving even more control of semantically releasing things like locks.
That said, 1.24 added WASM, which is really cool, so thanks for encouraging me to look at the release notes.
-
Not all of the stdlib is written in C. Some parts cannot be Python because it’s critical code that needs to be as fast as possible.
Python is already slow for many use cases, if the standard lib was all built in Python it would be just too slow for much more use cases.
I didn't mean it's a bad choice !
But I think it's a good example of the compromise that has to be made here : what's the best fitting technology vs. how to ensure easy onboarding for future contributors.
-
Sure! Here! Electron.
[Screams internally]
-
Honestly those usecases described here shouldn’t have been done in js in the first place.
Look, I'm in no position to talk seeing as I once wrote a shell script in PHP, but the profusion of JavaScript in the late aughts and early teens for things that weren't "make my website prettier!" feels very much like a bunch of "webmasters" dealing with the fact that the job market had shifted out from under them while they weren't looking and rebranding as "developers" whose only tool was Hammer.js, and thinking all their problems could be recontextualized as Nail.js.
-
Is this a 2yo write up, considering the last update was in 2023?
It was recently shared on Hackernews, I assume that's why it's showing up here now.
-
This post did not contain any content.
lmao.
rust seems pretty desperate to remain relevant.
"rust is replacing c"
"rust is replacing the Linux kernel"
"rust is replacing javascript"
"rust is replacing your mom" -
lmao.
rust seems pretty desperate to remain relevant.
"rust is replacing c"
"rust is replacing the Linux kernel"
"rust is replacing javascript"
"rust is replacing your mom"well, joke's on you. Since I rewrote her in Rust, my mum runs the 100 meters hurdles in 14 seconds
-
- It's statically compiled and isn't dependent on system binaries and won't break if there if the system has the wrong version like C/C++, allowing you to distribute it as a single binary without any other installation steps
You can do that with C++ too.
- Still produces fairly small binaries unlike languages like Java or C# (because of the VM)
I mean, the jars are actually pretty small; but also I really don't get the storage argument. I mean we live in a world where people happily download a 600 MB discord client.
- Is a modern language with a good build system (It's like night and day compared to CMake)
Meson exists ... as do others.
- And I just like how the language works (errors as values etc.)
Fair enough; though why? What's wrong with exceptions?
I work in a code base where I can't use exceptions because certain customers can't use exceptions, and I regularly wish I could because errors as values is so tedious.
- Is a modern language with a good build system (It's like night and day compared to CMake)
Meson exists ... as do others.
But they are not the default option. And your new job may not use them.
- And I just like how the language works (errors as values etc.)
Fair enough; though why? What's wrong with exceptions?
Exceptions is a non standard exit point. And by "non standard" I'm not talking about the language but about its surprise appearance not specified in the prototype. Calling
double foo();
you don't know if you should try/catch it, against which exceptions, is it an internal function that may throw 10 level deep ?By contrast
fn foo() -> Result<f64, Error>
in rRst tell you the function may fail. You can inspect the error type if you want to handle it. But the true power of Result in Rust (and Option) is that you have a lot of ergonomic ways to handle the bad case and you are forced to plan for it so you cannot use a bad value thinking it's good:foo().unwrap()
panic in case of error (see alsoexpect
)foo().unwrap_or_default()
to ignore the error and continue the happy path with 0.0foo().unwrap_or(13.37)
to use your defaultfoo()?
to return with the error and let the parent handle it, maybe
-
I assume you're talking about
runtime. AddCleanup()
? That's certainly nice, but it's not the same as a destructor since it only runs at GC time. It's useful for cleaning up data used by a shared library or something (e.g. something malloc'd by a C lib), but it only solves part of the problem.I'm talking about scope guards. In Rust, here's how you deal with mutexes:
{ let value = mutex.Lock(); ... use value ... // mutex.Unlock() automatically called }
The closest thing in Go is
defer()
:mutex.Lock() defer mutex.Unlock()
That works most of the time, but it doesn't handle more complex use cases, like selectively unlocking a mutex early while still guaranteeing it eventually gets unlocked.
Rust fixes this with the
Drop
trait, so basically I can drop something early conditionally, but it'll get dropped automatically when going out of scope. For example:struct A(String); impl Drop for A { fn drop(&mut self) { println!("dropping {}", self.0) } } fn main() { let a = A("a".into()); let b = A("b".into()); let c = A("c".into()); drop(b); }
Without the last line, this prints c, b, a, i.e. stack order. With the last line, it instead prints b, c, a, because I drop b early.
This is incredibly useful when dealing with complex logic, especially with mutexes, because it allows you to cleanly and correctly handle edge cases. Things are dropped at block scope too, giving even more control of semantically releasing things like locks.
That said, 1.24 added WASM, which is really cool, so thanks for encouraging me to look at the release notes.
Thanks for taking the time to explain it. Indeed the new runtime method does not guarantee when the resource will be cleaned, so something like that Drop trait would be quite useful
-
- Is a modern language with a good build system (It's like night and day compared to CMake)
Meson exists ... as do others.
But they are not the default option. And your new job may not use them.
- And I just like how the language works (errors as values etc.)
Fair enough; though why? What's wrong with exceptions?
Exceptions is a non standard exit point. And by "non standard" I'm not talking about the language but about its surprise appearance not specified in the prototype. Calling
double foo();
you don't know if you should try/catch it, against which exceptions, is it an internal function that may throw 10 level deep ?By contrast
fn foo() -> Result<f64, Error>
in rRst tell you the function may fail. You can inspect the error type if you want to handle it. But the true power of Result in Rust (and Option) is that you have a lot of ergonomic ways to handle the bad case and you are forced to plan for it so you cannot use a bad value thinking it's good:foo().unwrap()
panic in case of error (see alsoexpect
)foo().unwrap_or_default()
to ignore the error and continue the happy path with 0.0foo().unwrap_or(13.37)
to use your defaultfoo()?
to return with the error and let the parent handle it, maybe
That sounds a lot like how checked exceptions work, though with some terser handling syntax.
-
Sure you can spawn threads but now you have all the hazards of shared memory and locks, giving the 2.0 version of aliasing errors and use-after-free bugs. Also, those are POSIX threads, which are quite heavyweight compared to the in-process multitasking of Golang etc. So I would say that's not really an answer.
What exactly are the hazards of shared memory and locks? The ownership system and the borrow checker do a pretty good job at enforcing correct usage, and if you are clever you can even guarantee no deadlocks (talk at rustconf 2024 about the fuchsia network stack).
-
- Is a modern language with a good build system (It's like night and day compared to CMake)
Meson exists ... as do others.
But they are not the default option. And your new job may not use them.
- And I just like how the language works (errors as values etc.)
Fair enough; though why? What's wrong with exceptions?
Exceptions is a non standard exit point. And by "non standard" I'm not talking about the language but about its surprise appearance not specified in the prototype. Calling
double foo();
you don't know if you should try/catch it, against which exceptions, is it an internal function that may throw 10 level deep ?By contrast
fn foo() -> Result<f64, Error>
in rRst tell you the function may fail. You can inspect the error type if you want to handle it. But the true power of Result in Rust (and Option) is that you have a lot of ergonomic ways to handle the bad case and you are forced to plan for it so you cannot use a bad value thinking it's good:foo().unwrap()
panic in case of error (see alsoexpect
)foo().unwrap_or_default()
to ignore the error and continue the happy path with 0.0foo().unwrap_or(13.37)
to use your defaultfoo()?
to return with the error and let the parent handle it, maybe
But they are not the default option. And your new job may not use them.
Who cares if it's the default? If it's the best tool, use it.
It's to have a reason for "going Rust" be the build system, especially in the context of something as new as a WASM context where basically any project is going to be green field or green field adjacent.
Exceptions is a non standard exit point. And by "non standard" I'm not talking about the language but about its surprise appearance not specified in the prototype. Calling double foo(); you don't know if you should try/catch it, against which exceptions, is it an internal function that may throw 10 level deep ?
And that's a feature not a bug; it gets incredibly tedious to unwrap or forward manually at every level.
By contrast fn foo() -> Result<f64, Error> in rRst tell you the function may fail. You can inspect the error type if you want to handle it. But the true power of Result in Rust (and Option) is that you have a lot of ergonomic ways to handle the bad case and you are forced to plan for it so you cannot use a bad value thinking it's good:
You can do this in C++ https://en.cppreference.com/w/cpp/utility/expected (and as I said, if you feel so inclined, turn off exceptions entirely); it's just not the "usual" way of doing things.
-
That sounds a lot like how checked exceptions work, though with some terser handling syntax.
First time I hear about checked exceptions. How do you use them ? Are you forced to handle them explicitly ? Is the handling checked at compile time ?