Your assessment is missing the simple fact that FPGA can do things a GPU cannot faster, and more cost efficiently though. Nvidia is the Ford F-150 of the data center world, sure. It's stupidly huge, ridiculously expensive, and generally not needed unless it's being used at full utilization all the time. That's like the only time it makes sense.
If you want to run your own models that have a specific purpose, say, for scientific work folding proteins, and you might have several custom extensible layers that do different things, N idia hardware and software doesn't even support this because of the nature of Tensorrt. They JUST announced future support for such things, and it will take quite some time and some vendor lock-in for models to appropriately support it.....OR
Just use FPGAs to do the same work faster now for most of those things. The GenAI bullshit bandwagon finally has a wheel off, and it's obvious people don't care about the OpenAI approach to having one model doing everything. Compute work on this is already transitioning to single purpose workloads, which AMD saw coming and is prepared for. Nvidia is still out there selling these F-150s to idiots who just want to piss away money.